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A problem on the feedback control of a hyperbolic system under conditions of
uncertainty or conflict is analyzed, The problem is interpreted as a position
differential game [1-3] in a suitable functional space., The controls enter
into the boundary conditions and the mechanism for developing these controls
is described by an ordinary differential equation, The constructions are based
on a approach to position control problems for distributed-parameter systems
developed in [4-8], As in the case of ordinary differential equations [1-3] the
class of strategies solving the problems being examined is indicated.

1. Let Q be a bounded connected open set in the Euclidean space R, and r,
the boundary of Q, be an (n-1)-dimensional manifold. We consider the conflict-
controlled system

LV Ayt o)+ g (¢, 2) 1 Q = (o, D) % Q .1
Y (to, ) = yo (), iy%‘;—’-i)— =y () in Q

(Yo = HY(Q), y1& Lo (Q))
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Here a;; (z) = a;; () are functions continuously differentiable on €) ; a constant
v >> 0  exists for which the inequality
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where a (z) is a function continuous on Q , forany z & Q and &, & R,i=
1,..., n, H' (Q) is a first-order Sobolev space on set Q [9]. L, (Q)

is the space (of classes) of functions (Lebesgue-) square-summable on Q, We
assume: domain Q has a boundary ' for which the elements of space H () have
traces on I' from L, (I') and the formula for integration by parts and the theorem
on the compactness of the imbedding of H* () into L, () and into L, (T') are
true for them (for example, see [9-11]); § & Ly (Q) isa specified perturbation; W
is an m-dimensional phase vector of system (1,2); ¢ (+) is a measurable function
bounded on I' , For the sake of unessential simplifications we set (see [10-12])
0>0, a<<0, 62+ a?*z= 0 on I'. The function in the right-hand side of (1.2)
is assumed to be continuous in all arguments and to satisfy a Lipschitz condition in
w in each bounded domain of space R,, and the condition of uniform continuability
of solutions w (f) for ¢ > ¢, under every choice

u@)eP@), v)eQ@) (L.3)

where P () and Q (£) are convex compacta in Euclidean spaces £y, and R,
respectively, measurable and equibounded with respect to ¢ & lto, 8); B (£) and
C () are continuous matrices of appropriate dimensionalities, A closed set M is
specified in space R; X H! (Q) X L, (Q). We are required to construct a method
for choosing a feedback control y (feedback control y), producing realizations

u [¢] (v [¢]) that are Lebesgue-measurable on [Ze, 9] and satisfying (1.3), for
which the condition {{¢, y (¢, +), Oy (¢, )/ 0t} €= M is fulfilled for some t &

[25, ¥] (the condition {¢, ¥ (¢, +), Oy (¢, -) / 8t} & M is fulfilled for all te
[t,, ©]) forany law of formation of the measurable realization ¥ [t Q@) (ultle P(t)),

Note 1.1, The smoothness of the generalized solutions of system (1, 1) (see
[9-12]) essentially depends upon the smoothness of the boundary conditions in 2.
Generalized solutions from the so-called "energy” classes (see [11]) are of practical
interest, The introduction of an ordinary differential equation into system (1. 1) is
one of the possible variants for obtaining the necessary smoothness of the generalized
solutions. From the mechanical point of view the problem can be interpreted as a
problem of obtaining the optimal perturbed state of an oscillating body Q under
conditions of undeterminate interference by means of a mechanical force a (z) w 03]
distributed on the body's boundary T'. In this connection it is considered that the
law of variation of force w is described by an ordinary differential equation,

Let us pose the problem more precisely. Let {P; g} be a collection of all
functions u (f) & P (t)measurable on a set ¢ . A vector r = {W, ¥y, Y}, where
we Ry, 1h & H (Q) and y, & L, (Q), is called a state of system (1. 1)~(1.2).
The pairs {t, 1}, t = [#,, ®lyare calied positions, A rule associating a nonempty
set

Uty ta, 1) THP; [y, 1)} (V (11, 1,) T {Q; [1y, 15)})
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with each triple {Z,, £,, r},where &, <C t; < £, <8 and r = {w, y;, ¥,},
is called the first (second) player's strategy U (V).

We consider the system adjoint to (1,1), When @ (¢, ) ranges space L, (Q)
(see [9, 11]) the solution of the adjoint system (see [9, 11, 12]) ranges a set X to which
we allot a topology introduced by the mapping ¢ — z ¢, -; @), where z (-, +; ¢)
is a solution of the adjoint system. Let A be a partitioning of interval {¢,, ] by

points 1;, i=1,..., m (A) (Tiyqx > Tiy T2 = Iy, Tpay =) and let
8 (A) = max; (Tiy — 7). . The pair {y (¢, -)a, Oy (£, -)a / 0t} =
{y (&, x5 to, wos Yoo Y1s U)a, ¥, 25 to, W, Yo, Y1, U)a}, 2 Q Is

called a motion of system (1. 1) from position {t,, wy, y,, y,}, corresponding to
strategy U and partitioning A, if

Y (&, )a = C° (o, ¥1; H(Q)) () C* (I, B); L, (Q)) (1.4)
Q@ g B &
© aﬂ ¥
Vv o), (F5%2 — 40, ) dedt =\ g(t, 29 (¢, 0)dodt — (1.5
1% ¢ o &2
§y0 () 52Dz + (y, @) 0 (to, ) dx -
£ Q
o

g Sa(x)w(t)(p(t, z)dldt, Voe=X

fo

Here w (f) is a solution of the integral equation

{ (1.6)
w(t) =wo+ [{f (v, w(v) + B u(x)— C (1) v(v)} dv
to

where on [1;, Tisil the controls ¥ (*) & U (1;, Tiwp, W (13), ¥ (15, )4,
yt, (tis ')A) and v (') &= {Q; {Ti» Ti+l)}) i = 13* cey I (A) - 1; yll
(¢, +)a is the derivative with respect to ¢ of y (£, -}, as an element of space
ct ([to, ’ﬂ‘]; Lz (Q)). The motion {y (tv z; by, W, Yos Y1» V)Ae

i (x5 ty, Wo, Yos Y1, V)a}is defined similarly. Here C* ([t,, ¥1; X)is the
space of functions £ times continuously differentiable on [t, 8], with values in
space X. The set of motions introduced is not empty.

Note 1,2, The existence of function y (t, 2)5 & Lz (Q), satisfying the integral
indentity (1,5), follows from the results in [9, 11} To prove that ¥ (> aEl
(Its, Bl H (Q)) [ C* ([ty, ®); Le (Q)) we use the expansion of the solution of (1. 5)
into a series in the eigenfunctions of the spectral problem

Aw = —re, 80/, +ocolp=10
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and the estimate from [13].
This problem has a solution from H1 (Q)for a denumerable number of values of
3 {see [10,11]). We note that under the assumptions made, all A; > 0.
In space H' (Q) we introduce the norm

n

[ 7 [l2 =§Zaﬁ (x)%%}i dx——ga(x)hzdx—{— iahzdl‘

tj=1

equivalent to the norm of space H! (Q)  in[10,11], We formalize the initial
problems in the following manner, Let M€ be a closed & -neighborhood of set
M in the space R, X H' (Q) X Ly (Q).

Problem 1(the encounter problem) Constructa strategy U
with the property: for any g > 0 we can find a positive number 8, for which
the inclusion {Z, ¥ (¢, “)a, ¥/’ (£, +)a)} & M® is fulfilled at some ¢ & [¢,, & Jfor
all motions {y (£, z; to, We, Yo, Y1, U)a, ¥’ (& x; to, We, Yo, Y1, U)a} if only
8 (A)y < 6,

Problem 2 (the evasion problem), Constructa strategy V
with the property: for any & >0 we can find a positive number 0o for which
the inclusion {z, y (¢, )a, llt,' (¢, )a) & Me is fulfilled at all { &=
[to, 4] for a1 moticns {y (t, xz; by, Wos Ygs Urs V)A; yt’ (- (t, x; Ly, Woy Yos Ui
V)a}if only 8 (A) << do-

2, The following basic theorem is valid,

Theorem 2,1 (on the alternative in anencounter-
evasion game), Oneandonly one of the following statements is valid for
any initial position {t,, Wy, ¥y, ¥1}, W & Ry and{y,, y,} = H' (Q) X L,
(Q), anyinstant § > ¢, andanyset M C R, x H' (Q) X L, (Q)

1) a first player's strategy U exists, solving the encounter problem for the data
mentioned;

2) a second player's strategy V exists, solving the evasion problem for the data
mentioned,

Let us consider the basic constructions that can be used to prove Theorem 2. 1,
By H we denote the space

H =R, X H (Q) X L, (Q)
with the norm

1w yo, v} g = (Nw Ik, + N W@ + 91 [ @)™

We define set M° as
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MO = {{t’ w, yla !/2} E[to, '&J X Hl{t’ Y1, 1/2} = M}

We introduce the concept of stable sets by analogy with [1,4-8], Let K, and K,
be certain collections of pairs {f, A}, ¢ & [t,, ®]1 and h = H. We say that
set K, isu-stable relative toset K, if for every choice of the pair {t,, h,}

& Ky, Ry = {w,, y,!, Y.}, theinstant £* > . and the control v (-) &
{Q; [z, 1*)} we can find at least one control u (-)& {P; [t,, t*)} under which
the inclusion

(2.1)
*, ris*y e K,, {v,r 1} =K,

is valid at some T € [y, t*] for the function r [t]={wltl, y I¢, -1, »/- [, -1y
Here w[t] is a solution of Eq. (1.4) with initial condition w, and controls
uw(-) and v(.); {ylt, -1, y/{t, -1} is the corresponding motion of system
(1.1) from the position {¢,, wy, ¥,, y,>} on the interval (2., #*]. The
concept of a v-stable bridge is introduced similarly,

Let K be an arbitrary set in the space of positions {z, r} & t,, 8] x H. We
construct the first player's strategy U°® which we say is extremal toset K, By J
we denote the following functional on space H X H:

J(ry, 1) = {wy, w2>Rm + Y11, Yi2dp, @ + Y21, Y220y @
Jo (ry =T (r, r) (H1(Q) = (H" (Q)*; ri = {wi, Yriy Yai})

By K (t) we denote the section of set K by the hyperplane T = {. Suppose
that some triple {f4, t*, r}, has been selected, where &, <( ¢, < t* (¥ and
r={w,y,uycs H . 1 K(t,) s+ @, thenby U* (t,, t*, r)we denote the
collection of all u® (+) & {P;{ty, t*)} with the property:

1) a sequence of function ™ () & {P; [¢,, t*)}converging weakly in space
L, ([t,, t*); Ry,) to function u®(-); can be found;

2) asequence of r, = K (t,), rn = {W", 2", 5"}, canbe found, for which

Hm Jo(r —r,) = inf {Jo(r — 1) | re & K (£,)} (2.2)

N~»C0
3) foreach n =1, 2,. ..

tk
n 2,
<w — w", j B(@)u® (t)dt>Bm = (2.3)

Ly

¢
min {<w —w", 5 B()u(t) dt>R ju () {P; 1ty t*)}}
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The set of U°(t,, t*, r) is nonempty since {P; [t,, t*)} is a subject, weakly
compact in itself, of space L, ([ty, *); R;). The second player's strategy J¢
extremal to set K is defined similarly,

By V, we denote strategies upper-semicontinuous in variable r.

The latter means that for any quantities #, < t, < t* (% and r & H the
inclusion v & V) (2, t*, r)follows from the conditions r, — r inH, vy — v

weakly in Ly([ 2., t*); Ry,), v Vy (I4, t*, 15). By a motion of system
(1. 1)-(1.2), corresponding to strategy U (V) and partitioning A we mean the
triple {w [tla, ylt, -1a, /2, -1a}, where the pair {yl¢, <Ia, y/ [2, -1}
determines the motion of system (1.1) and wltla is determined from (1,6). By
W (M°) we define the collection of all pairs {¢,,r,} &[#,, 8] X H possessing
the property: for any strategy V,, and any numbers ¢ > ( and 8§ > (0 there
exists at least one motion {wl¢; 2y, ry, Vola, Ylt,2ity, ry, Vola, yi'l ¢,

Z; by, Ty, Vola}, comesponding to a partitioning A with diameter 8 (A) < 0 of
the interval [¢,, ®) for which the inclusion

{t’ w [t]Ay !/[t_. +la, yt'[t, ]A} = M°e

is fulfilled at some instant ¢ & [i,, 9]. Here M/ is a closed €-neighborhood
of set M° in the metric || {t, r}|| = (82 + | rllg? )"

Lemma 2, 1. Set W(MP°)is u-stable relative to set M°.
This lemma can be proved by the proof scheme for analogous statements in
[1,4-8].

Note 2, 1, Since the sheaf of motions of system (1, 1) under controls u and
U satisfying (1.3) is a compactum in €° ([z,, #1; H' (Q) X L, (R)), without loss
of generality we can assume that set } is a compactum in £y X H' (Q) X L, (Q).

Theorem 2,2, Problem 1 on encounter has a solution if and only if the
condition

{wo, Yo, Y1} = W (M) (2,) (2.4)

is fulfilled for the initial position {¢,, w,, Yo, ¥;}. Under inclusion (2, 4) the
solution of the problem is provided by the strategy U® extremal to set W (M°).

Let us consider the main features of the proof of this theorem, Let 7° [t]a =
{wltla, y It, -1a, ¥ [t, -1a} be the motion of system (1. 1)~(1.2), corresponding
to the extremal strategy U® and the selected partitioning A (1;) of the interval
(z,, 01 We introduce the following functionals
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gt =

{iﬂf {Jo(r*lt], —n)re WAL (t), WM (t)~= o
20, W (M)(t) = &
{inf{fo(re [ly,—nr)[rEM(t)}, M°(t)+= @

oo, M°(t)=¢

Taking into account the definition of extremal strategy U® and the stability of set
W (M°) , we obtain the estimates

g? {ti+}} <¥ ¢e? i’ggi {1 . K$ {A)} + o (6 (&)} (2' 9)
PRI 2Ty X (rf lvita — 1) (1 4 N8 (A)) +0 (8 (A)) + o (k)

(K,N =const >0; ¢ (*k)—>0, k- co; 0o (8§ (A)/8(A)—
0, § (A) — 0)

for & [t;4,] and 7y [#®]. Here ™ & [1;, 1,,,] satisfies the
second inclusion in (2, 1) and the quantities r; are determined from (2.2), The
theorem's assertion follows from estimates (2, 5) and the compactness of the sheaf of
motions of system (1.1) in R, X H' (Q) X L, (Q).

Note 2,2, The strategy V yielding the solution to Problem 2 can be
constructed as a strategy extremal to a certain v-stable set,

As in [1,6-8} we can delineate a broader class of sets M (for example, sets
convex, closed and bounded in R, X H' (Q) X Ly (Q) for which the set W (M°)
admits of an effective description in the form of linear inequalities in
R, X H" (Q) X L, (X)).

The author thanks In, S, Osipov for the formulation of the problem and for
valuable advice,
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